Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.12.21266249

ABSTRACT

Purpose Six-19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. Methods We analysed sera of 430 COVID-19 patients with severe and critical disease from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. Results The prevalence of neutralizing AABs to IFN- and IFN-{omega} in COVID-19 patients was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected, predominantly male (83%) patients (7.6% IFN- and 4.6% IFN-{omega} in 207 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with higher mortality (92.3% versus 19.1 % in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. Conclusion IFN-AABs may serve as early biomarker for development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients according to our algorithm for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Subject(s)
COVID-19 , Fever , Critical Illness
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.25.449893

ABSTRACT

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies is a common and distinctive feature of severe or critical COVID-19. Although a robust IgG response is typically considered to be beneficial, an overshooting activation mediated by immune receptors recognizing the Fc part of IgG (Fc{gamma}Rs) is thought to be detrimental and associated with immunopathology. However, direct evidence of Fc{gamma}R driven immunopathology in COVID-19 is still sparse. Here, we used a cell-based Fc{gamma}R activation reporter system to systematically analyze SARS-CoV-2 specific IgG responses and IgG-mediated Fc{gamma}RIII (CD16) activation profiles in COVID-19 patient cohorts categorized by severity of disease. We found that increased CD16 activation by SARS-CoV-2 specific IgG is associated with a known pro-inflammatory IgG modification, namely afucosylation. Further, we identified CD16-reactive soluble IgG immune complexes (sICs) to be present in the serum of COVID-19 patients and show that the resulting CD16 activation by sICs is strongly related to disease severity. Our results provide evidence that CD16 activation by pro-inflammatory SARS-CoV-2 specific IgG together with circulating sICs is a major contributor to COVID-19 immunopathology. These findings highlight the importance of Fc{gamma}R driven immunopathology in COVID-19. Further, our data highly warrant the development of targeted intervention strategies against IgG driven immunopathology following SARS-CoV-2 infection.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-404769.v1

ABSTRACT

Background: Some recipients of ChAdOx1 nCoV-19 COVID-19 Vaccine AstraZeneca develop antibody-mediated vaccine-induced thrombotic thrombocytopenia (VITT), associated with cerebral venous and other unusual thrombosis resembling autoimmune heparin-induced thrombocytopenia. A prothrombotic predisposition is also observed in Covid-19. We explored whether antibodies against the SARS-CoV-2 spike protein induced by Covid-19 cross-react with platelet factor 4 (PF4/CXLC4), the protein targeted in both VITT and autoimmune heparin-induced thrombocytopenia.Methods: Immunogenic epitopes of PF4 and SARS-CoV-2 spike protein were compared via prediction tools and 3D modelling software (IMED, SIM, MacMYPOL). Sera from 222 PCR-confirmed Covid-19 patients from five European centers were tested by PF4/heparin ELISA, heparin-dependent and PF4-dependent platelet activation assays. Immunogenic reactivity of purified anti-PF4 and anti-PF4/heparin antibodies from patients with VITT were tested against recombinant SARS-CoV-2 spike protein. Results: Three motifs within the spike protein sequence share a potential immunogenic epitope with PF4. Nineteen of 222 (8.6%) Covid-19 patient sera tested positive in the IgG-specific PF4/heparin ELISA, none of which showed platelet activation in the heparin-dependent activation assay, including 10 (4.5%) of the 222 Covid-19 patients who developed thromboembolic complications. Purified anti-PF4 and anti-PF4/heparin antibodies from two VITT patients did not show cross-reactivity to recombinant SARS-CoV-2 spike protein. Conclusions: The antibody responses to PF4 in SARS-CoV-2 infection and after vaccination with COVID-19 Vaccine AstraZeneca differ. Antibodies against SARS-CoV-2 spike protein do not cross-react with PF4 or PF4/heparin complexes through molecular mimicry. These findings make it very unlikely that the intended vaccine-induced immune response against SARS-CoV-2 spike protein would itself induce VITT. 


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.18.204362

ABSTRACT

In 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the first documented cases of severe lung disease COVID-19. Since then, SARS-CoV-2 has been spreading around the globe resulting in a severe pandemic with over 500.000 fatalities and large economical and social disruptions in human societies. Gaining knowledge on how SARS-Cov-2 interacts with its host cells and causes COVID-19 is crucial for the intervention of novel therapeutic strategies. SARS-CoV-2, like other coronaviruses, is a positive-strand RNA virus. The viral RNA is modified by RNA-modifying enzymes provided by the host cell. Direct RNA sequencing (DRS) using nanopores enables unbiased sensing of canonical and modified RNA bases of the viral transcripts. In this work, we used DRS to precisely annotate the open reading frames and the landscape of SARS-CoV-2 RNA modifications. We provide the first DRS data of SARS-CoV-2 in infected human lung epithelial cells. From sequencing three isolates, we derive a robust identification of SARS-CoV-2 modification sites within a physiologically relevant host cell type. A comparison of our data with the DRS data from a previous SARS-CoV-2 isolate, both raised in monkey renal cells, reveals consistent RNA modifications across the viral genome. Conservation of the RNA modification pattern during progression of the current pandemic suggests that this pattern is likely essential for the life cycle of SARS-CoV-2 and represents a possible target for drug interventions.


Subject(s)
COVID-19 , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL